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Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map
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~Received 2 October 2000; published 25 April 2001!

We analyze the chaotic motion and its shape dependence in a piecewise linear map using Fujisaka’s
characteristic function method. The map is a generalization of the one introduced by Artuso. Exact expressions
for diffusion coefficients are obtained with previously obtained results used as special cases. A fluctuation
spectrum relating to the probability density function is obtained in a parametric form. We also give limiting
forms of the above quantities. The dependence of the diffusion coefficient and probability density function on
the shape of the map is examined.

DOI: 10.1103/PhysRevE.63.057201 PACS number~s!: 05.45.2a, 05.40.2a, 05.60.2k, 45.05.1x
in

h
r

o
ic
c

ffi

e
te
n
o
fu

uc
nc
a

l
o
fo
ity
he
e
or
e

R

r

e
s

in-

pes
s of

pe

lle
s

Deterministic diffusion is a well-known phenomenon
spatially extended, one-dimensional maps@1–8#. It has been
proposed as a possible mechanism to account for the be
ior of Josephson junctions in the presence of microwave
diation @9# and of parametrically driven oscillators@10#. In
Hamiltonian dynamics@11#, transport due to chaos is als
significant because of its applications in celestial mechan
confinement problems, and so on. Recently, some exa
solvable models have been analyzed@6–8#. The only aim of
these studies is the evaluation of the exact diffusion coe
cient using a cycle expansion technique@12#. It is a well-
known fact that the chaotic dynamics in spatially extend
maps has two complementary aspects—diffusion and in
mittency. These are related to the probability distributio
which is approximately Gaussian by the central limit the
rem. Fujisaka’s characteristic function method is a use
tool for analyzing both these aspects of stochasticity in s
maps. In this brief report, we apply the characteristic fu
tion formalism @13,14# to analyze the chaotic motion in
generalized piecewise linear~GPL! map with a variable
shape. It is a generalization of the exactly solvable mode
Ref. @6# allowing analytical study. The exact expression f
the diffusion coefficient and a parametric representation
the fluctuation spectrum relating to the probability dens
function ~PDF! are obtained. Generalization permits t
study of the dependence of these quantities on the shap
the map. We notice that the GPL map with flat peaks is m
suited to describe systems exhibiting intermittency in tim
The generalization brings the map in Ref.@6# nearer to sinu-
soidal maps studied numerically in Ref.@1#. A similar shape
dependent piecewise linear model has been examined in
@2# from the point of view of correlation times.

Chaos-induced diffusion systems have a general fo
@4,13#:

Xt115Xt1Pr~Xt!5Yr~Xt!, Pr~X11!5Pr~X!, ~1!

where r is a control parameter. The sinusoidal mapPr(X)
5r sin(2PX) is an example@1#. After the decompositionXt
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5Nt1xt , whereNt is the cell number measured in whichXt
is located andxt(0<xt,1) the distance measured from th
relative originX5Nt , Eq. ~1! can be uniquely rewritten a
two dynamical laws:

Nt115Nt1D~xt!, xt115 f ~xt!. ~2!

HereD(x) is the jumping number defined as the largest
teger smaller thanx1Pr(x) and is free fromNt and f (x)
5x1Pr(x)2D(x), satisfying 0< f (x),1. f (x) is the re-
duced map of the extended map~1!.

We analyze a piecewise linear map with variable sha
of the type in Fig. 1. In the general case, the map consist
linear segments with slopes6mi , i 50,1, . . . ,h, mi,mi 21.
For the cells on the bisector, the slope magnitude ism0. For
the i th cell above and below this cell on bisector, the slo
magnitude changes tomi . The reduced map consists ofk
54h13 linear segments. Fork increasing from 1 to 4h
13, these line segments have slopesm0 ,m1 ,m2 , . . . ,
mh ,2mh ,2mh21 , . . . ,0,2m1 , 2m2 , . . . ,2mh ,mh ,
mh21 , . . . ,m2 ,m1 ,m0, andmis satisfy the relation

3

m0
1(

i 51

h
4

mi
51. ~3!

ge,
:

FIG. 1. Generalized piecewise linear~GPL! map with a variable
shape withh51. On both axes, units are arbitrary.
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The extended map can be generated from the redu
map by giving suitable jump numbersD(x) ~constant for a
line segment!. These ~from left! are 0,1,2, . . . ,h,
h, h21, . . . ,2,1,0,21,22, . . . ,2h,2h,2(h21), . . . ,22,
21,0. Figures 1 and 2 show the map and the reduced
for h51.

The map~1! can be studied using the characteristic fun
tion formalism@13,14#. In this, the dynamics ofAt governed
by At115B(xt)At (t50,1,2, . . . ) with A051 is studied.
B(xt) is a steady function ofxt that evolves according to th
chaotic mapxt115 f (xt)(0<xt,1) @13#. Equivalently, one
can consider the dynamics of the local time average of a t
seriesa t5(1/t)( j 51

t ln B(xj) @14#. Map ~1! can be treated by
putting At5exp(Nt2N0) and B(x)5exp@D(x)#. We put N0
50, and thena t5Nt /t. The long-time dynamics ofNt can
be studied using Fujisaka’s characteristic function

lq5
1

q
lim
t→`

1

t
ln@^exp~qNt!&#. ~4!

^exp(qNt)& is the average over a steady ensemble and is
q-order moment of exp(Nt). One can expandlq in the series
of cumulants. The expansion converges foruqu,c, c being
the convergence radius. In this case,lq can be approximated
as

lq5l01D q, ~5!

l05a`5 lim
t→`

Nt

t
,

wherel0 is the drift velocity.D is the diffusion coefficient
given by

s t5^~Nt2l0t !2&'2D t ~6!

for large values oft. s t is the variance ofNt . The asymptotic
PDF ofa t has a Gaussian component~central limit theorem!
and a non-Gaussian component. Foruqu!c, the moment

FIG. 2. Reduced map of GPL map in Fig. 1. On both axes, u
are arbitrary.
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^exp(qNt)& is determined by the Gaussian component~diffu-
sion branch ofq) and for uqu@c, it is determined by the
non-Gaussian component~intermittency branch ofq). The
PDF r t(a), wherea t takes values betweena and a1da,
can be obtained as

r t~a!;exp@2s~a!t#, ~7!

s(a) being the fluctuation spectrum,r t(a)→d(a2a`) as
t→`. r t(a) can be obtained fromlq in parametric form
using the Legendre transform

a5
d

dq
~qlq!,

s~a!5q2
d

dq
lq . ~8!

We first consider the case withh51. The reduced map
consists of seven line segments with slopes~from left!
m0 ,m1 ,2m1 ,2m0 ,2m1 ,m1 ,m0. These satisfy Eq.~3!.
The Frobenius–Perron operatorH is defined by

HG~x!5 (
k51

7
G~yk!

u f 8~yk!u
5 (

k51

7
G~yk!

umku
, ~9!

where yk is the kth solution of f (yk)5x and f 8(x)
5(d/dx) f (x). mk is the slope of thekth line segment of the
reduced map. From Eq.~9! we note that the invariant densit
p* (x) is uniform @p* (x)51# in the interval 0<x<1
@Hp* (x)5p* (x)#. The Lyapunov exponentl can be ob-
tained as

l5
3

m0
ln~m0!1

4

m1
ln~m1!. ~10!

Sincemi.1, we note thatl.0, and therefore the reduce
map is always chaotic. The characteristic functionlq can be
evaluated@13# using the linear operator defined by Moriet
al. @15#:

ĤF~x!5
1

p* ~x!
H@p* ~x!F~x!#, ~11!

~12!

For our modelH5Ĥ. D(x), which are constant over a lin
segment, are~from left! 0,11,11,0,21,21,0. Hence we get
from Eqs.~9!, ~11!, and~12!,

ĤeqDx5
3

m0
1

2

m1
eq1

2

m1
e2q5

3

m0
1

4

m1
cosh~q!,

~13!

lq5
1

q
lnF 3

m0
1

4

m1
cosh~q!G . ~14!

s
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BRIEF REPORTS PHYSICAL REVIEW E 63 057201
The result can be generalized for integer values ofh.
Again, slopes satisfy relation~3!. The Frobenius-Perron op
erator again leads to the uniform invariant densityp* (x)
51. The Lyapunov exponentl and the characteristic func
tion lq are given by

l5
3

m0
ln~m0!1(

i 51

h
4

mi
ln~mi !, ~15!

lq5
1

q
lnF 3

m0
1(

i 51

h
4

mi
cosh~ i q !G . ~16!

The map is fully chaotic sincel.0. The drift velocityl0
50, always. The diffusion coefficientD is

D5 lim
q→0

d

dq
lq5(

i 51

h
2i 2

mi
. ~17!

The fluctuation spectrums(a) can be gotten in the parame
ric form using Eq.~8!:

a5

(
i 51

h

~4i /mi !sinh~ iq !

3/m01(
i 51

h

~4/mi !cosh~ iq !

s~a!5q

(
i 51

h

~4i /mi !sinh~ iq !

3/m01(
i 51

h

~4/mi !cosh~ iq !

2 lnF 3

m0
1(

i 51

h 4

mi
cosh~ iq !G . ~18!

q50 givesa50; s(a)50. If 1q gives1a, 2q will give
2a without changings(a). It can also be noted that max
mum value ofa is obtained by puttingq→`. We have

amax5h s~amax!5 lnS mh

2 D . ~19!

In the special case when allmi ’s are equal (5m0), Eq.
~17! can be summed to obtain a closed-form expression
D. In this case, Eq.~3! givesm05314h:

D5
h~h11!~2h11!

3~4h13!
. ~20!

With h115b,

D5
~b21!b~2b21!

3~4b21!
, ~21!

which reduces toD52/7 for b52 giving results obtained
previously in Ref.@6#.
05720
r

A closed-form expression can also be gotten for the s
cial case mi /mi 215r 5 a constant, 0,r ,1. Then mi
5m0r i . From Eq.~3!,

m0531
4~12r h!

r h~12r !
. ~22!

For everyr between 0 and 1, the model becomes an exa
solvable case. From Eq.~17!,

D5
2@h21~122h22h2!r 1~h11!2r 22r h112r h12#

@3r h~12r !14~12r h!#~12r !2
.

~23!

The limiting forms of the above quantities can be o
tained for a constanth as the peak shape becomes maxim
flat. These can be arrived at by taking limitr→0. From Eq.
~23!, D behaves like

D5
h2

2
. ~24!

The above limit can also be obtained by puttingmi→`( i
50, . . . ,h21) andmh→4. Applying this we get the follow-
ing limits:

lim
r→0

lq5
1

q
ln@cosh~qh!#, ~25!

lim
r→0

a5h tanh~qh!, ~26!

lim
r→0

s~a!5 lnFh22a2

h2 G 1/2Fh1a

h2aGa/2h

. ~27!

In Fig. 3 we plot diffusion coefficient vsr for h52. It can
be observed thatD increases with increasing flatness of t
peak shape.D varies from 0.9 to 2 whenr is varied from 1 to
0. Increasingh, keepingmi5m0( i 51,2, . . . ,h) appears to

FIG. 3. Variation of diffusion coefficientD with r for h52. On
both axes, units are arbitrary.
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BRIEF REPORTS PHYSICAL REVIEW E 63 057201
have more influence on increasingD. This is becauseD
52/750.29 forh51, whereas it goes to 0.909 forh53 @Eq.
~20!#.

The probability distribution function forNt , the distance
from the origin, can be obtained using the fluctuation sp
trum s(a). From Eq.~7!, we have

r t~N!;
1

t
expF2sS N

t D t G , ~28!

r t(N) being the PDF thatNt takes values betweenN and
N1dN. This PDF is approximately Gaussian by the cent
limit theorem. In the exactly normal caselq is given by Eq.
~5! ands(a) takes the form

FIG. 4. Fluctuation spectrums(a) vs a for different cases.
Solid lines represent actuals(a) while dotted lines give corre-
sponding Gaussian forms.~a! h51, m05m157; ~b! h51, m0

5100,m154.1237; and~c! h52, m05m15m2511. On both axes,
units are arbitrary.
tt
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s~a!5
~a2l0!2

4D
~29!

with

a5l012Dq. ~30!

For the present modell050. In Fig. 4 we plots(a) for
different maps and compare with the Gaussian form given
Eq. ~29!. For a constanth, the non-Gaussian character in
creases with increasing flatness of the map. But, as in
case of diffusion coefficients, increasingh has more influ-
ence in producing non-Gaussian characters of the PDF.

To conclude, analysis of the PDF with fluctuation spe
trum brings out that intermittency and the non-Gauss
character of the PDF increases with increasing peak he
and flatness of the map, with height exercising more effe
This is important when one selects models for describ
experiments relating to diffusion. For example, systems
hibiting chaotic motion similar to Brownian motion shou
have a Gaussian distribution. Maps with linear segme
having constant slope and minimum peak height are usefu
cases like this. Maps with greater height and peaks becom
more flat will be best suited in describing diffusion system
showing intermittency in time. With flatness becoming ma
mum, the diffusion coefficient behaves likeh2/2, h being the
peak height. The corresponding limiting forms for the ch
acteristic function and fluctuation spectrum are also
tained. The limiting form of the fluctuation spectrum is qui
different from the Gaussian form following the central lim
theorem.

We are attempting a generalization of maps with fra
tional heights given in Ref.@7# along similar lines. This work
will be reported elsewhere.
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