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Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map
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We analyze the chaotic motion and its shape dependence in a piecewise linear map using Fujisaka’'s
characteristic function method. The map is a generalization of the one introduced by Artuso. Exact expressions
for diffusion coefficients are obtained with previously obtained results used as special cases. A fluctuation
spectrum relating to the probability density function is obtained in a parametric form. We also give limiting
forms of the above quantities. The dependence of the diffusion coefficient and probability density function on
the shape of the map is examined.
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Deterministic diffusion is a well-known phenomenon in =N+, whereN; is the cell number measured in whi2h
spatially extended, one-dimensional m@ps8]. It has been s located andk;(0<x,<1) the distance measured from the
proposed as a possible mechanism to account for the behanelative originX=N;, Eq. (1) can be uniquely rewritten as
ior of Josephson junctions in the presence of microwave raswo dynamical laws:
diation [9] and of parametrically driven oscillatof40]. In
Hami!tonian dynamics{_ll], transport dye to chaos is alsp Nep =N AX),  Xesq=F(X,). 2)
significant because of its applications in celestial mechanics,

confinement problems, and so on. Recently, some exacth . . . : .

. ere A(x) is the jumping number defined as the largest in-
solvable m_ode_ls have been _analyiéd8]. The o_nIy am of .teger smaller tharx+P,(x) and is free fromN, and f(x)
these studies is the evaluation of the exact diffusion coefﬁszr P.(X)— A(x), satisfying O<f(x)<1. f(x) is the re-
cient using a cycle expansion technique?]. It is a well- uced |r”nap of the’ extendedgm(m '
knownhfact that the (I:haotic dynamics in jp;fatially extgndead We analyze a piecewise Iinea'r map with variable shapes
maps has two complementary aspects—diffusion and inter- . !
mittency. These are related to the probability distribution,Of the type in Fig. 1. In the general case, the map consists of

o . X o linear segments with slopesm;, i=0,1, ... h, m<m;_;.
which is approximately Gaussian by the central limit theo- or the cells on the bisector. the slope maanitudeis For
rem. Fujisaka’'s characteristic function method is a usefu’g ! p 9 d

tool for analyzing both these aspects of stochasticity in sucmhzg']tnr;tsgg ?:tr)ng\r?;:snimbel?rvr\]’ethrlz d(li”egnmballi)ecczgonr’sitsr;: ;Ifope
maps. In this brief report, we apply the characteristic func —4h+3 linear segments. Fok increasing from 1 to #

tion formalism[13,14 to analyze the chaotic motion in a .

generalized piecewise linediGPL) map with a variable +3, these line segments have slopes,m;,my, ...,
shape. It is a generalization of the exactly solvable model if"h+ ~ Mhs = Mh-1, - .. Ommy, =M, ..., =My, My,
Ref. [6] allowing analytical study. The exact expression for Mh-1, - - - M2,My, Mo, andm;s satisfy the relation

the diffusion coefficient and a parametric representation for "

the fluctuation spectrum relating to the probability density 3 4

function (PDF) are obtained. Generalization permits the m_0+2‘1 Ei:l' ©)
study of the dependence of these quantities on the shape of

the map. We notice that the GPL map with flat peaks is more
suited to describe systems exhibiting intermittency in time. -m
The generalization brings the map in R] nearer to sinu- 1
soidal maps studied numerically in REL]. A similar shape .
dependent piecewise linear model has been examined in Ref. 1 m
[2] from the point of view of correlation times. m .
Chaos-induced diffusion systems have a general form m,
[4,13]: .

Xi+1= Xt Pr(X) =Y (Xp), P(X+1)=P,(X), (1) 1 1

wherer is a control parameter. The sinusoidal mRgX)
=r sin(A1X) is an examplgl]. After the decompositiorX;

-2 -1 0 1 2
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m (exp@Ny)) is determined by the Gaussian componliffu-

sion branch ofq) and for |g|>c, it is determined by the
non-Gaussian componefintermittency branch ofy). The
PDF pi(«), where «; takes values betweem and a+de,
can be obtained as

pi(a)~exd —o(a)t], )

o(a) being the fluctuation spectrum,(a)— 6(a— a.,) as
t—. p(a) can be obtained from, in parametric form
using the Legendre transform

f(x)

d
o azﬁ(q)\q)!
X (@) =2, ®
dg™¢

FIG. 2. Reduced map of GPL map in Fig. 1. On both axes, units

are arbitrary. We first consider the case with=1. The reduced map

The extended map can be generated from the reduce%onS'Sts of seven line segments with slopémm left

L . . My, my,—my,—mMy,— My, My, my. These satisfy Eq.(3).
map by giving suitable jump numbens(x) (constant fora %" 1 Loy 0 .
line segment These (from lef) are 0.12...0h, The Frobenius—Perron operatdris defined by

hh—-1,...21,0-1,-2,...—h,—h,—(h—1), ... 2, " G &y
—1,0. Figures 1 and 2 show the map and the reduced map HG(X) =D, Yol _ D Yk , (9)
for h=1. S (y| @1 [md

The map(1) can be studied using the characteristic func- ) )
tion formalism[13,14). In this, the dynamics o, governed Where y, is the kth solution of f(y,)=x and f'(x)
by Aci1=B(X)A(t=0,1,2...) with A,=1 is studied. = (d/dx)f(x). my is the slope of théth Ilne_segment of th_e
B(x,) is a steady function o, that evolves according to the feéduced map. From E¢9) we note that the invariant density
chaotic mapx, . ;= f(x,)(0=x,<1) [13]. Equivalently, one P*(X) is uniform [p*(x)=1] in the interval Gsx<1
can consider the dynamics of the local time average of a timEHP* (X)=p*(x)]. The Lyapunov exponent can be ob-
seriesa; = (11t)2]_,In B(x)) [14]. Map (1) can be treated by tained as
putting A;=expN;—Ng) and B(x)=exgdA(X)]. We put Ny 3 4
=0, and thena;=N,/t. The long-time dynamics dfl; can A=—1In(mg) + —In(my). (10
be studied using Fujisaka’s characteristic function Mo m,

1 1 Sincem;>1, we note that >0, and therefore the reduced
Ng== lim TIn[(exp(th))]. (4)  map is always chaotic. The characteristic functigncan be
R R evaluated 13] using the linear operator defined by Mt

al. [15]:
(exp@N)) is the average over a steady ensemble and is the [15]

g-order moment of ex{). One can expandl, in the series

of cumulants. The expansion converges [igr<c, ¢ being HF(X)= ———H[p* (X)F(x)], (1)
the convergence radius. In this cakg,can be approximated ) ) p*(X)
as )\q:; lim ?hl(qux H e H et .. He?™ ), (12)
Ng=No+Da, (5) o —1
Ny .
No=a,=lim T For our modelH=H. A(x), which are constant over a line
to segment, aré¢from left) 0,4-1,+1,0,—1,—1,0. Hence we get
. . . . e . from Egs.(9), (11), and(12),
wherel is the drift velocity.D is the diffusion coefficient gs-(9), (19 (12
given by . 3 2 2 3 4
Hed*=—+ —el+ —e 9=—+ —coshq),
oi=((N=hot)?)~2D't (6) Mo M M Mo M 13
for large values of. oy is the variance oN; . The asymptotic 113 4
PDF of o, has a Gaussian componéoentral limit theorem Ao=—Inl— + —cosr(q)}. (14)
and a non-Gaussian component. Fqgf<c, the moment g me m
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The result can be generalized for integer valueshof

Again, slopes satisfy relatio(8). The Frobenius-Perron op-

erator again leads to the uniform invariant dengity(x)

=1. The Lyapunov exponemnt and the characteristic func-

tion A4 are given by

h

A=—In(m +§,_||||I 15

Mo ( O) & m; ( i)! ( )
Ag=—I + h I'( ) (16)
q n . & iCOS 1q)|.

The map is fully chaotic since>0. The drift velocity\ g
=0, always. The diffusion coefficie is

D=Ilim
q—0

17

d 2i?
ﬁ)\q=2 F.

=1

The fluctuation spectrurx(«) can be gotten in the paramet-

ric form using Eq.(8):
h
> (4i/my)sinh(iq)
a—= - h

3/my+ >, (4/m;)coskiq)
=

h
> (4i/my)sink(iq)
-1
o(a)=q h
3/my+ >, (4/m;)coskiq)
i—1

3 h

—+
mo i=

—In (18

4 .
. HCOSKIQ) .

g=0 givesa=0; o(a)=0. If +q gives+ «, —q will give

— a without changings(«). It can also be noted that maxi-

mum value of« is obtained by putting]— <. We have

mpy,
7.

In the special case when ath’s are equal €my), Eq.

Amax=h  o(amad=In (19

(17) can be summed to obtain a closed-form expression for

D. In this case, Eq(3) givesmy=3+4h:

h(h+1)(2h+1)
T 3(4h+3) (20
With h+1=2,
D:(ﬁ—l)ﬁ(Zﬁ—l)’ 21)

3(4p—-1)

which reduces td =2/7 for =2 giving results obtained
previously in Ref[6].
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FIG. 3. Variation of diffusion coefficiend with r for h=2. On
both axes, units are arbitrary.

A closed-form expression can also be gotten for the spe-
cial case mj/m;_;=r= a constant, &r<1. Then m
=mgr'. From Eq.(3),

4(1—r"

my=3+—.
0 rh(1-r)

(22

For everyr between 0 and 1, the model becomes an exactly
solvable case. From Eql7),

O 2[h?+(1—-2h—2h?)r+(h+1)%r2—rh*1—rh+2)

[3r(1—r)+4(1—rM](1—r)?
(23)

The limiting forms of the above quantities can be ob-
tained for a constarit as the peak shape becomes maximum
flat. These can be arrived at by taking limit-0. From Eq.
(23), D behaves like

(24)

The above limit can also be obtained by puttimg— oo (i
=0,... h—1) andm,—4. Applying this we get the follow-
ing limits:

1
lim Nq==In[coshgh)], (25)
r—0 q
lima=htanhgh), (26)
r—0
h2— 42 172 h+ o]/
rll_rg U(a)=|n[T ha (27)

In Fig. 3 we plot diffusion coefficient vefor h=2. It can
be observed thadD increases with increasing flatness of the
peak shapeD varies from 0.9 to 2 whenis varied from 1 to
0. Increasingh, keepingm;=mgy(i=1,2, ... h) appears to
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_ 2
()= % (29
with

For the present modely=0. In Fig. 4 we ploto(«) for
different maps and compare with the Gaussian form given in
Eqg. (29). For a constanh, the non-Gaussian character in-
creases with increasing flatness of the map. But, as in the
case of diffusion coefficients, increasiighas more influ-
ence in producing non-Gaussian characters of the PDF.

To conclude, analysis of the PDF with fluctuation spec-
trum brings out that intermittency and the non-Gaussian
character of the PDF increases with increasing peak height
and flatness of the map, with height exercising more effect.
This is important when one selects models for describing

FIG. 4. Fluctuation spectruno(a) vs « for different cases. experiments relating to diffusion. For example, systems ex-
Solid lines represent actuat(a) while dotted lines give corre- hibiting chaotic motion similar to Brownian motion should
sponding Gaussian formga) h=1, my=m;=7; (b) h=1, m, have a Gaussian distribution. Maps with linear segments
=100,m;=4.1237; andc) h=2, my=m;=m,=11. On both axes, having constant slope and minimum peak height are useful in
units are arbitrary. cases like this. Maps with greater height and peaks becoming

more flat will be best suited in describing diffusion systems
have more influence on increasiiy This is becausd®  showing intermittency in time. With flatness becoming maxi-
=2/7=0.29 forh=1, whereas it goes t0 0.909 for=3 [Eq.  mum, the diffusion coefficient behaves liké/2, h being the
(20)]. peak height. The corresponding limiting forms for the char-

The probability distribution function foN;, the distance acteristic function and fluctuation spectrum are also ob-
from the origin, can be obtained using the fluctuation spectained. The limiting form of the fluctuation spectrum is quite
trum o (). From Eq.(7), we have different from the Gaussian form following the central limit

theorem.
P (N)~Eexr{—a(ﬂ t (28) We are attempting a generalization of maps with frac-
! t t) ] tional heights given in Ref.7] along similar lines. This work

) will be reported elsewhere.
pi(N) being the PDF thal, takes values betweeN and

N+dN. This PDF is approximately Gaussian by the central The authors are grateful to University Grants Commis-
limit theorem. In the exactly normal casg is given by Eq.  sion, India, for providing financial assistance through DSA

(5) ando(«@) takes the form and COSIST schemes.
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